
SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2010

1 | P a g e

Revision Description

7/21/2010 Original

SQL-Hero Tracing

Introduction

Let’s start by asking why you might want to do SQL tracing in the first place. As it turns out, this can be

an extremely useful activity for debugging. For example, if you’re not familiar with what a particular

piece of logic is doing in the database, a trace can reveal exactly what’s going on. Even for code that you

are already familiar with, capturing the exact parameters used when a specific stored procedure is called

can be very helpful. It’s also incredibly valuable for diagnosing performance problems in SQL logic.

The tracing tool in SQL-Hero tries to deal with the following weaknesses found in the out-of-the-box SQL

Profiler tool:

- Should be able to manipulate the trace grid (sort, filter, search with more options, use coloring,

etc.), and extract information from it easily (e.g. copy information into e-mails, identify “call

sequences”, etc.)

- Should be able to analyze the data in the grid, in place (e.g. average execution times, etc.)

- Should be able to save the data in the grid to a repository where can then later do comparative

analysis over time, search for previously collected data, and have the ability to deliver flexible

analysis reports via e-mail

- Ability to keep the contents of the grid “relevant” (e.g. keep most recent rows in view and

provide advanced filtering)

- Provide active notifications when conditions of choice are detected

- Provide a view of trace data that is anything other than a standard grid – SQL-Hero offers two

special views of trace data that are graphical and convey important information

Another side goal is to make the ability to start tracing easy and accessible, such as is offered with Visual

Studio integration. Furthermore, the integration of the various tools allows you to take collected trace

records and turn them directly into SQL that can be executed, with 2 mouse clicks.

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2010

2 | P a g e

Tracing Tool

Let’s take a detailed look at the Tracing tool:

Here we see that the “Analysis Type” is set to “Details”. This means that the grid will show each

individual trace record, as opposed to a summary report style, which we’ll look at later. “Procedures –

Completions Only” in this case refers to the type of trace we wish to run. There are other types of trace

which capture more detail, but “Procedures – Completions Only” is generally a good choice for capturing

stored procedure and SQL batch completions. “Events / Filters” () invokes a pop-up that

lets you specify advanced filters and establish criteria that can be used to work as alerts:

Notice that there are a number of “canned” trace types, but you can customize your own using the user

defined types. (These let you pick the events to be captured, although you can set Filters and

Notifications on any type.)

In terms of Notifications, here is one example of what you could do:

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2010

3 | P a g e

Once a trace is running, if a trace record is collected where the Duration is greater than 1000

(milliseconds), the object name starts with “up_MyProc”, and it’s the third time this appears, then the

collected row will be shown in orange, the trace will be stopped, and if the monitoring tool is running, a

snapshot will be taken on it. (See details on the monitoring tool in a different whitepaper.)

Back to the main toolbar, the “Settings” command () lets you control certain behaviors about

how tracing will work:

Here we can control:

- Whether we want the trace to span all databases (the default is to target a specific database of

interest)

- Include some additional trace columns which are not normally part of SQL traces, out-of-the-box

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2010

4 | P a g e

- Apply an event filter to only show events that originate from the current machine

- Exclude some common system calls which can “muddy” your traces with unnecessary detail

- Whether we will count zero duration records as part of some analysis reports

- Establish the number of milliseconds that will tell the trace tool that a particular call may have

hit a timeout (used in some kinds of analysis reports)

Furthermore, to limit the quantity of data in the grid for clarity (and performance) you can specify limits

and behaviors related to the number of trace records collected. In the settings shown above (default),

only the last 5000 trace records are shown in the grid, although all records are still persisted into your

trace table.

Returning back to the main tool window:

The first button () after “Settings” is a state button that indicates whether you wish to color rows in

the grid or not. (This only applies against stopped traces.) There are different ways to apply coloring,

available from the grid’s context menu (right-click):

The filter button () invokes the global object filter screen. This lets you apply a wide range of criteria

to limit what will be captured during an active trace, or loaded from saved trace data.

The silent button (), when toggled to the “on” state causes events to continue to be collected while a

trace is running, but they will not be shown in the grid until the trace stops. This is useful when you’re

collecting a large number of events to reduce load on your system and load on the event source SQL

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2010

5 | P a g e

Server instance. In fact, one option described above lets you switch to silent mode automatically when

a certain number of events are captured.

The clear results button () removes the current contents of the grid. This does not delete the rows

that may exist in your trace table.

To actually start a trace, you need to provide some basic information. You can pick the database you

will be tracing, pick a database that you will store the collected trace records in, and name a trace table

that will hold the trace records. Unlike SQL Profiler, you must store trace results in a table here, in this

version of SQL-Hero. (Note that you can load traces from .trc files.)

To actually start your trace, use the “Start” () command; you can then Stop or Pause a running

trace. Once you have collected trace records, this grid context menu offers a number of options.

Grid actions are relatively standard throughout the application, but “Nonrepeating Column Values”

takes on special significance for tracing. With this option you can build a “pasteable” list - typically of

object names - showing call sequence:

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2010

6 | P a g e

The “Select Object” command () is available when an object name is selected and causes a switch to

the Editor tool where the named object is searched for and selected. (The database is assumed to be

the database named in the “Database:” drop down.)

The “Script Object(s)” command () takes one or more captured SQL commands, concatenates them,

and places them in a new Editor tool window, ready for execution if you wanted to run them (again).

(You can select multiple rows in the grid by holding Ctrl as you click on row selectors.)

The “Find” command () offers some searching capabilities that are especially helpful for analyzing

traces. In the example below, we’ll locate records with Duration > 1 and the TextData column

containing “Exists”. Rows that do not meet these criteria are hidden from view.

To bring all rows back into view, uncheck the “Hide Unmatched” option:

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2010

7 | P a g e

Trace Repository and Reports

Now that you have collected trace data, you can upload this into the SQL-Hero repository, if you have

one installed and have your client pointed at it. (For details on this, see the “Installing SQL-Hero”

whitepaper.) Back to the toolbar:

The “Save To Archive” command () lets you save data to the repository either based on what is

currently present in the grid, or directly from a trace table where trace data is stored:

If you load from a trace table, its contents will be emptied as the rows are moved into the repository.

Data loaded into the repository must have a label which is the upload session name. If the durations

being uploaded are in microseconds, you should specify that here as well.

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2010

8 | P a g e

With data now in the repository, the Manage Archives command () invokes a search screen which can

be used to query the repository. You can use any of the provided search criteria to locate individual

commands that were recorded (based on the “Event criteria” panel), or sessions themselves. In the

example below, we’ve searched for stored trace records that were for the Local-SQLHero database,

where the TextData contains the word “cargoitem” (case insensitive), and the commands’ end date was

1/1/2010 or later. After issuing the search (Refresh), 16 commands met this criteria in one session that

contains a total of 201,922 commands.

Clicking on “Load Full Session” would bring back all 201,922 rows into the trace grid. Clicking on “Load

Matches Only” would bring back the 16 rows. In fact, after electing to load data from the repository, the

Load Trace dialog lets you fine tune what’s loaded even further:

In this case, checking “Merge into existing results” would allow you to accumulate trace rows into the

grid – if unchecked, the loaded data replaces the current grid contents.

Instead of forcing you to load traces into the repository manually, SQL-Hero offers the option of

automatically uploading trace data, on a schedule. The “Manage Upload Schedules” command () lets

you configure this. The typical approach here would be to configure a SQL Trace to run on an on-going

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2010

9 | P a g e

basis, perhaps recording long running commands, commands that result in errors, timeouts, deadlocks,

etc. – captured into a trace table. On the upload schedules screen, we spell out where to find that trace

table, the upload frequency, and other details about the upload:

In this example, we’ve recorded events for the Local-SQLHero database in the database Local-Test3, in a

trace table called SHTrace. The SQL-Hero service will on an hourly basis look for new events to move

into the repository. “Append Session” is checked, so a single session will grow continuously as events

are added. “Remove Source” is checked so rows in SHTrace will be deleted as they are moved into the

repository. Leaving “Remove Source” unchecked would mean that trace data continues to reside in the

SHTrace table, in addition to the repository. An optional filter can be applied - e.g. “Duration > 1000”

would only upload events where the Duration is greater than 1000.

Now with trace data available in the repository, some reporting options are possible. Switching to the

“Report View” () changes the available toolbar options:

The report type choices here change the available report parameters. In this example, we’ve chosen to

run a report that will show captured Block and Deadlock counts over the last 14 days, across all

databases for which there is data in the repository:

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2010

10 | P a g e

Let’s say now that you want to deliver this report to a distribution list. You can schedule analysis reports

to run using the “Add Report to Schedule” command ():

Adding a report implies you’re scheduling the same report that would run if you clicked the “Run

Report” button (). This brings up the report schedule window:

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2010

11 | P a g e

You can pick a run time of day, a frequency, a delivery type, and so on. Delivery types can be a PDF or

Excel file attachment, or the PDF / Excel file can be stored on a server with your generated email

containing a link to them. You must specify an email server (SMTP), an email subject, and an email

body. If the body appears to be HTML, the email will be sent in HTML format.

The distribution list is a list of email addresses which can be “;” delimited. The “File Path” is only needed

if you wish to distribute the report via a link. You may include the following substitution strings in your

email body:

<!DateTime/> Current Date (UTC)

<!FullFileName/> The full local file path of the generated Excel/PDF file, on the machine the SQL-

Hero Windows service is running.

<!FileName/> Just the filename portion of the generated Excel/PDF file.

As such, you could for example use the following for an email body:

This report was scheduled to be delivered to you and has data current as of <!DateTime/> GMT. <A

HREF="\\codex06\reportshare\<!FileName/>">Click here to view report.

If your schedule’s file path is set to “c:\reportpath”, this assumes you’ve shared that directory as

“reportshare” on the machine “codex06”.

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2010

12 | P a g e

Advanced Reporting

There are two “special” types of trace reports available in SQL-Hero currently. These are found under

the report type list:

These reports cannot be scheduled for delivery by email currently, and work exclusively with trace data

saved in the repository. We’ve made it easy, however, to get to both of these reports in as few as two

mouse clicks, from trace data that’s sitting in the detail grid. To do this, use the context menu on the

trace grid and pick Advanced Reporting:

By trying to run these reports using this approach, you’ll be asked whether you want to permanently

save the grid data in the repository (Save) or whether you want to save it to the repository only long

enough to run the report (Delete).

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2010

13 | P a g e

Regardless of whether you run the report using the grid’s context menu or pick it from the report list,

you will see a set of parameters, much as with all other report types. The following table explains the

meaning behind each parameter field:

Report Parameter Description

All SPID Over

Time

Type (Time frame) Affects the length of the report by showing seconds,

minutes or hours at fixed intervals

Type (Coloring) Determines how the color is selected to portray activity

For (Database) Filter events to those from a specific database

Max Length Effectively controls the height of the report down the

screen (acts as a limit to prevent run-away rendering)

From / To Filter events to only those that occurred within a specific

timeframe

Session Name Filter events to those which were captured in a specific

named trace upload

Exclude SPID List This can be a comma separated list of SPID numbers that

should be excluded from the report

Profile

Command

Analysis

Type (Level) Controls the level of summary. “Procedure Summary”

shows each procedure name listed once each where the

width of bars reflects percentage of overall duration.

“Procedure By Order” shows each procedure as many times

as they are called, in the order they are called, where the

width of bars reflects each call’s percentage of the overall

duration. “Statement Summary” shows the nesting of calls

into calls such as triggers, UDF’s, etc. but no further detail

within calls; rectangle widths reflect relative duration with

respect to the parent nesting level. “Statement Detail”

shows the nesting of calls, and every statement is called out

as individual rectangles. The “Statement” types require

that you’ve captured a trace that includes statement level

events.

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2010

14 | P a g e

Type (Coloring) Determines how the color is selected to portray activity

Statement Spacing Effectively controls the height of the report down the

screen

Session Name Filter events to those which were captured in a specific

named trace upload

SPID Filter events to one specific SPID number

From / To Filter events to only those that occurred within a specific

timeframe

Omit Whitespace When checked, time that was not spent within database

calls is not shown in the report; conversely, when not

checked, this time is shown as the separation of rectangles

in the report. This option is only applicable when the type

is “Statement Summary” or “Statement Detail.”

To understand what you see when you run these reports, let’s consider this example:

We’re seeing that at 12:51:53 PM, three different connections have activity going on concurrently. The

SPID numbers are provided both at the top, and on the tool-tips provided for each activity bar. The

coloring option used here is showing that on SPID 1095, a lot of calls are completing whereas on SPID

774, commands aren’t completing as frequently. If there are errors, blocks or deadlocks recorded in the

same trace data as that being displayed, these issues are highlighted as red bands that surround the

main activity bars, as illustrated here:

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2010

15 | P a g e

You can quickly navigate to such errors using the “Next Error” button – these errors get highlighted by a

red rectangle that changes color.

You can also search for specific object calls, by name using the “Search” text box – it will again use color

changes to highlight all objects that match the search criteria:

As is the case for both advanced reports, the Zoom slider can be used to zoom in and out of the report

space:

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2010

16 | P a g e

Note there’s a context menu available on activity bars, to allow you to instantly jump to the object for

viewing its contents, using the SQL Editor tool:

The next advanced report is the Profile Command Analysis. Let’s consider the following example to

understand what the report can tell us. Here we see there are some statements which are occurring in

a SQL batch (SET, WHILE and another SET). Following that is a call to a stored procedure, up_AddBase.

A small bit of time elapses within that procedure before a trigger fires, tg_Base_AfterInsert. A longer

amount of time elapses as that trigger executes. tg_Base_AfterInsert also makes two calls to a scalar

UDF called uf_GetBaseID. Neither of the calls to the UDF take much time at all. After

tg_Base_AfterInsert completes, another trigger fires: tg_Base_ForInsert. After that trigger ends, the

stored procedure ends as well. More activity continues in the SQL batch after the procedure ends. The

tool-tip shown is for the tg_Base_AfterInsert trigger and from it we learn that it ran for 4 seconds. That

4 seconds represents 10% of the total trace capture and 57% of the current call to up_AddBase. It

began 1 second from the start of the trace data available. The developers who worked on the object

up_AddBase include only one: CODEX07\Administrator. Some statement-level detail is presented as

well.

The fact that tg_Base_AfterInsert took 57% of the time of its parent up_AddBase also gets reflected in

the width of its rectangle. The second and third dashed lines of the report represent 0% and 100%

respectively.

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2010

17 | P a g e

This report was run with the type of “Statement Summary” and “Object Type” (for coloring). If it were

run with the type of “Procedure By Order,” you’d see this:

Notice that all detail has been stripped out and you’re only looking at the calls originating from the main

SQL batch.

The “Omit Whitespace” checkbox is important since you may see things like this:

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2010

18 | P a g e

or:

The first example does include whitespace and it tells us a lot: there are time gaps between calls to

sp_executesql in this example. However if there are very long gaps, omitting whitespace can be helpful

to avoid having to “hunt” for activity by scrolling. The “Statement Spacing” setting also becomes

important since it represents the total length that can be allocated, and if whitespace is included, it is

counted as part of the report length, explaining why the relative position of the “update” statement in

the second call to sp_executesql is different between these two views.

This report presents all data for one SPID at a time. If there are multiple SPID’s involved for a given trace

capture, the available SPID numbers are presented in a rolodex format at the top of the report:

And of course the Zoom slider is available as well to control the scaling of the report, in turn letting you

see more data or more detail.

Calls that returned in error are always highlighted in red, regardless of the selected coloring scheme

(here, tg_Base_AfterInsert had failed):

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2010

19 | P a g e

As with the SPID Over Time report, a context menu is available on report objects:

The “Script Text” option presents the actual SQL statement in the SQL Editor, ready for re-execution.

The “Load Trace” option invokes the Manage Stored Trace screen, defaulting search parameters that

isolate the particular statement fairly well, letting you load the raw data into the trace grid, as it would

have looked during its original capture.

It’s also important to know that if you capture a trace session where you have a completion type of

event with no corresponding start event, the Profile Command Analysis report will warn you that there

are some events which will not be included in the report. The report essentially looks for the first paired

start / end and anything prior to that will be excluded:

Similar rules apply at the end of the report where a start is captured without a paired completion. Also,

the Profile Command Analysis report works best when a trace has been used which includes both start

and completion event types. If you only have completion events, it will still work, but may not be as

accurate, since durations are used to try and infer where the start event would have been. When this

situation is detected, it’s provided as a warning at the start of the report area:

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2010

20 | P a g e

The power of this report can be appreciated by the fact we can do the following:

- Look for “wide bars” very easily, which represent relatively slow executors

- Understand where there were gaps or delays – which when combined with the SPID Over Time

report allows one to see the context of activities

- See things you’d never see in a regular SQL Profiler trace: for example, developers who’ve

modified the object

Furthermore, since we’re working with data saved in the repository, one can fairly easily communicate

issues within a team. (A future release of SQL-Hero will allow you to run these reports by using a small

“report parameter file” which can be shared among team members.)

Trace Grid Reports

Returning to trace detail data that’s already loaded in the detail grid, there are a number of analysis

reports specific to what’s present in the grid itself:

“Stored procedure timings” summarizes RPC completions in a way that lets you analyze average,

minimum and maximum durations, among other things:

“Statement timings” lets you analyze statement timings within stored procedures, providing similar

information.

“Timeout analysis” and “Deadlock analysis” aim to show the call chain that led to timeout and deadlock

situations. These require that you’ve captured both statement start and completion events.

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2010

21 | P a g e

The “Resource analysis” report asks you to select one or more columns which are grouped on:

In this example we’re grouping by object name and we would see:

Some important columns here include the count of calls for each object, the percent of all calls for that

object, the total accumulated duration, the percent duration (higher numbers imply more resource use),

average duration, duration-to-count ratio (higher numbers point to an object that’s taken more time to

execute relative to the number of times it has been called).

The “Slow Past Threshold” report allows you to look for “outliers”: specific instances of events that take

longer than would be typical based on the object’s average duration.

