
SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2010

1 | P a g e

Revision Description

4/4/2010 Original

SQL-Hero SQL Source Control

Introduction

The idea of SQL source control probably means different things to different people. If you use

Microsoft’s GDR for VSTS Database Edition, it could mean managing your source-of-truth in an external

repository, with changes reconciled to and from it. For others, you might use scripts for all objects,

maintained in an existing source control system such as VSS or SVN. Both of these approaches assume

you will use a process that involves steps of reconciliation: your source-of-truth isn’t really the database

itself, so anything you do there is really just “preliminary” until it makes it into source control.

SQL-Hero’s version of source control is actually a bit simpler, by design. To achieve this, it integrates

directly with the SQL-Hero editor tool to provide an experience that resembles the kind of source

control you might expect within Visual Studio when editing source code files. In its basest form, it

makes the contents of the database the source of truth. There are a number of advantages, including:

- Other developers can see what you’re actively working on and as such, prevent “collisions” (i.e.

lost updates)

- It’s not possible to make changes that are “forgotten” from the source-of-truth.

- There are fewer steps involved in managing what’s being worked on – however, source control

on its own does not manage builds per se. Other build tools within SQL-Hero can assist in that

regard - or one can continue to use other tools such as GDR to deal with builds.

The current version of SQL-Hero supports an exclusive check-out model. This will likely change in future

versions where we expect to support a merge model, plus support direct integration with TFS.

It should be noted that you do not have to use SQL-Hero source control – whether you use the editor

tool, or not. You can stick with whatever process you prefer to manage change in your databases and

still take advantage of other product features. For example, as noted in the whitepaper on change

history tracking, it’s still valid to keep an audit history of the physical database, no matter your views on

source control.

Working with Source Control

To enable SQL-Hero integrated source control, you need to have access to SQL-Hero server components

- source control meta-data is stored in the central repository. Details on how to install server

components can be found in the whitepaper “Installing SQL-Hero.”

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2010

2 | P a g e

On the Editor toolbar menu, the Manage -> Source Control Settings command invokes some global

source control options:

Checking “Integrated source control is enabled” is the first step:

Other options include:

Automatically check out when edit When unchecked, you will need to explicitly check out objects

before they can be edited.

Work item number is required

with comments

When checked, with comment prompting enabled (see below), the

work item number becomes a required field.

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2010

3 | P a g e

Automatically check in when

execute

Checking this means that when you commit an object by executing

it, it will no longer show as being checked out to you. The time an

object is checked out, therefore, is strictly the time between when

you explicitly check it out (or start editing it) and when you commit

its change.

Scripts produced from compares

should not be under source

control

The implication of not checking this is that if automatic check-outs

are enabled, you can end up checking out all the objects

referenced by a change script.

This screen also lets you provide the user name of optional source control administrators, by database

and object type. Note that a SQL-Hero administrator is also automatically a source control administrator

for all databases.

A source control administrator is allowed special privileges, including:

- Is able to undo the checkouts of others

- Is able to execute object changes despite the object being checked out to someone else

Although not strictly associated with source control, you can also force developers to enter comments

when they commit object changes (and potentially check them in, if “automatically check in when

execute” is checked). This compares to some source control systems which require you to provide

comments on check-in. Note that SQL-Hero uses the captured comment in a two specific ways:

- Optionally places the comment inside the object itself, in the object tombstone – ensuring

visibility to the comment to all developers, regardless of the tools they use

- Places the comment in the repository, making it available for release notes, details in

notifications, etc.

This is controlled using the Editor’s toolbar menu option Manage -> Tombstone Settings:

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2010

4 | P a g e

If tombstones are identified as being mandatory, a tombstone will be added to any object that is missing

one that matches the template shown on the Tombstone Settings screen. One can also force a

comment, but only if one has not already been provided within a certain timeframe. This works on the

premise that you may need to change an object a number of times before you’re “happy” with the final

product and all the changes to get to that point are logically related.

The full default tombstone template is:

/***

Name: <!CURFULLNAME/>

<!OPTIONAL/>Date: <!DATETIME/>

Author: <!CREATOR/><!OPTIONALEND/>

Description: <!DESCRIPTION/>

Log:

<!LOGLINE/><!USERNAME(24)/><!DATETIME(24)/><!COMMENT/><!LOGLINEEND/>

**/

<!OPTIONAL/> and <!OPTIONALEND/> delimit regions of text that do not need to match in the existing

object’s text. <!LOGLINE/> and <!LOGLINEEND/> delimit the section that will accumulate comments

that are added by comment prompting.

Putting it all together, assume one has the following procedure:

If I make a change and hit F5 to commit the change by executing the ALTER, the following appears:

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2010

5 | P a g e

If I type in a comment of “Added 1,2,3” and click OK, the procedure is updated as follows:

Note that we have two objects showing as being checked out to me. (We could have automatic

checkouts enabled, in which case up_SomeNewProc may have started as not being checked out, but the

change just made caused it to be checked out.)

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2010

6 | P a g e

Automatic check in is not enabled in this example, otherwise executing the change would have checked

it in. As such, we can explicitly check it in using either the tree’s context menu (right-click):

Or by using the editor’s source control toolbar:

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2010

7 | P a g e

Yet another way in which you can interact with source control is using the “Pending Check-Ins” panel, as

invoked from the source control toolbar:

This brings up a new editor panel that summarizes current check-out status for all objects:

You have the option here to show checkouts by other users, and for other databases, too. You can

check-in or undo checkouts on multiple objects at once from here, too.

Sandbox Databases

So far we’ve covered behavior of source control when dealing with a single database. SQL-Hero

supports a variation in source control whereby two databases can be used. Here the first database

serves as the source-of-truth, and the second database serves as a local “working copy.” In this case a

checkout in the working copy also checks the object out in the source-of-truth. A check-in causes the

working copy’s object to be applied to the source-of-truth database. This approach is well suited to

when you need to work on developing an application when off-line at times: you’re able to check out

objects even when you’re disconnected from the SQL-Hero application server. These are considered

“provisional checkouts” and show in the object tree as being underlined. When you connect to the

application server later, they become “real” checkouts. Undoing a checkout for an object in the two

database model has the added effect of pulling the current version of the object from the source-of-

truth database.

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2010

8 | P a g e

To set up the two database model, one needs to do two things:

- Ensure that both databases are global connections

- Name the central source-of-truth database name in the “Local Storage For” column of the

working copy database’s connection, as illustrated here:

Here when we work with Demo08LSF, it’s the working copy. Demo08 is the central database.

