
SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2011

1 | P a g e

Revision Description

6/14/2011 Original

9/5/2011 Updates based on changes in portal

SQL-Hero Web Portal

Introduction

The SQL-Hero web portal is installed as part of SQL-Hero web components (it now co-exists in the same

location with the exposed SOA/WCF API for SQL-Hero). During installation, you’ll see a link which takes

you to the site:

The site serves important functions, for both reporting and tracking changes. Any developer on your

team can access the portal, so long as they are registered in the SQL-Hero repository. Users are

automatically registered if they make changes in tracked databases (using Windows Authentication), or

they can be added explicitly using the Manage -> Manage Users menu option:

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2011

2 | P a g e

If you are using IIS 7.0+, have HTTP redirection enabled, and have installed SQL-Hero as a site (not just

an application underneath an existing site), you will be able to reference the portal using just the server

name and port number – for example, “http://myhost:46837”. The typical way to create a new site is to

use a port number that’s not assigned to an existing site. The default port SQL-Hero uses is 46837

although this can be altered during installation, if desired.

If you have Windows authentication installed, when you connect to the portal, it will try to log you in

using your Windows credentials – only if this fails will you be asked to log in using a login page.

We’ve added two additional ways to reach the web portal: from SQL-Hero itself, and when using Visual

Studio integration. From SQL-Hero, the Portal tab is effectively an embedded browser that uses your

current application server setting to determine the portal location. (If you don’t have server

components installed, you get some additional details about what server components are and the

overall SQL-Hero architecture.) In Visual Studio, the Portal is available as a tool window accessible from

the main menu:

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2011

3 | P a g e

Claiming Objects

Some organizations will appreciate a “non-intrusive” database development process which allows

developers to work with either a shared development database or individual sandbox databases. By

“non-intrusive”, we mean that developers are free to make changes in the live development database

without having to pay a lot of attention to details like “what objects did I end up changing in this

session?” or “now I need to commit all the work I’ve done to a source control system.” Those who are

source control purists may say “Tough! Deal with it: it’s part of a robust process.” However, we’ve

observed that streamlining the process isn’t all that hard while leveraging some of SQL-Hero’s strengths

to claw back a level of robustness. SQL-Hero does integrate with external source control systems such

as TFS as well, but the process discussed here tends to be suited to organizations that feel the benefits

of simplified but more manual change management outweigh the costs. Since SQL-Hero supports

multiple models, the choice is largely organizational.

One way to achieve streamlining is to use the new SQL-Hero web portal’s build pages. Let’s start by

looking at a scenario where we have developers using a shared development database. This database

may serve a single application or many applications – and we need to worry about handling builds for all

applications independently. Let’s say we have a development, QA and production database:

Let’s assume a developer does some work in the development database and changes a stored

procedure and a UDF. It’s not hard to imagine a busy developer perhaps remembering the procedure

but forgetting that the UDF was changed. Of course different tools make it harder: such as TFS and

Database Projects, where your objects would be checked out, awaiting check-in as part of a possibly

larger change set. That topic is covered in a different whitepaper.

Assuming you wanted a simpler tracking system, if one were to visit the SQL-Hero web portal and pick

the “Unassigned” menu option, it might look like this:

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2011

4 | P a g e

Notice how the portal “knows” what objects have been changed but are not associated with a particular

build. We can perform that association directly on the site – simply pick the desired application and

“Save Changes”. A “responsible user” is also tracked and defaulted to the logged in user. The “label”

drop-down and add (+) button allow you to pick an existing reference value or add a new one.

Reference values can be bug numbers, or anything else you prefer to use to track work.

Also note that objects which have published region difference compliance failures are excluded from the

“not assigned to builds” page’s results. Including them could result in “lost updates” in the target

region. The last section covers a report which shows these compliance issues separately.

Once these values have been assigned, clicking on the Save Changes button clears away the unassigned

list, and the same objects now appear on the assigned list:

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2011

5 | P a g e

(The assigned list is editable only for SQL-Hero administrators, mainly to correct mistakes – we trust that

most assignments will be correct!)

But how does one define the values in the build drop-down? Given this is intended to be a one-time

task, it’s something that can be done using the SQL-Hero client application, SQL Editor tool. In this

example, we used “Create Build…”:

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2011

6 | P a g e

We provide a friendly build name, specify which database serves as the starting point for object

movement, and the final database where, when objects reach it, the build is considered complete. The

status of “Open” implies we are free to add new objects to the build. When a build is promoted to any

other database, the status automatically changes to “Closed” which means we can no longer add new

objects, but the build is not yet complete. The Permanent check-box, when checked, implies that if the

build changes from Open to Closed or Completed, a new build with the same name will be created in

Open status, meaning we’ll always be able to add new objects using the build in the starting database.

Because of this, a sequence number is used to identify the build – the combined name and sequence

number must be unique.

With objects now easily matched to applications, let’s look at how easy it is to actually perform builds.

Modified Build Process

With objects now “claimed” by developers and associated to builds, we have a way to reliably know

what objects to promote from one database region to the next logical region. The build process itself

has streamlined support using the SQL-Hero client application (or Visual Studio integration), although

technically one can work with raw object lists right from the portal itself. For example, you can copy-

and-paste an object name list if you check “Show object name list”:

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2011

7 | P a g e

In the SQL-Hero client tool, we can search for open and closed builds:

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2011

8 | P a g e

If we double-click the first grid row (or click Edit), you’re brought to the build details panel:

Here we see the objects that comprise the build, any labels (e.g. bug numbers) that apply to each, and a

log of events that relate to the build.

To actually promote objects from one database to another, pick the “next” database to move to in the

drop-down in the panel tool bar:

Notice how some tool bar buttons are now enabled. In the simplest scenario, we now click “Run

Compare”. We’re asked if the script that gets generated should include a directive that will cause SQL-

Hero to update the build information in the repository when the script executes successfully.

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2011

9 | P a g e

If you intend to run the generated script outside of SQL-Hero, then Raw SQL may be a valid choice,

although the directive that’s added is added inside a SQL comment, so using Auto Promote produces

script that can be executed anywhere. If you do not use Auto Promote or will not run the script in SQL-

Hero, you’ll need to manually click on the Promote button after you’ve applied the change script, as an

extra step. (The promotion step changes a build’s status from Open to Closed, so it’s an important thing

to do and should not be skipped.)

Let’s assume we click Auto Promote. Now we’re brought to the Schema Compare tool and the compare

is issued automatically for us. We’ll see the difference list, filtered to the objects involved in the build:

Clicking “Create Script” gives us the actual change script to apply. Note that it includes the promotion

directive, with the target database named, and the script’s database set to QA. At this point we only

need to hit F5 to execute the script:

With the successful completion of the script, we’re given a message that gets us to confirm the

promotion operation:

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2011

10 | P a g e

After the promotion completes, a build report appears listing objects involved in the build. The report

can be exported to PDF or Excel if the intent is to share the content.

Let’s assume now that the user makes a change in another object in development. Back on the

Unassigned list on the SQL-Hero portal, we can assign this object to the proper application:

Now performing a build search, we can see how “Application A” has two on-going builds: numbers 1

and 2. #1 has 2 objects and was the one we just promoted (hence the status of Closed). #2 is the Open

build we just added the above object to.

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2011

11 | P a g e

After another promotion to QA, we’d see:

One can easily imagine a process by which regular builds are performed from development to QA, but

much less frequent movements happen from QA to production. Do we really need to promote a large

number of small builds in this case? Build consolidation is an alternative that can be used to combine

multiple open or closed builds into one new build.

Build Consolidation

Combining builds is a straightforward process, launched from the SQL-Hero client tool:

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2011

12 | P a g e

The option presents all open and closed builds. It’s legal to combine both open and closed builds, but all

selections must be for the same “From database”, “Final database” and “Build name”. If any build is in

closed status, the new build will also be closed. It’s also illegal to include an open build if it’s flagged as

being permanent: such a build should be changed to closed first (either manually or through

promotion). The new consolidated build contains all unique objects from selected source builds.

After the above consolidation is performed, a build search where we’ve elected to show completed

builds would show this:

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2011

13 | P a g e

Notice how builds #1 and #2 for “Application A” now have a status of “Consolidated.” This status is

treated the same as “Complete” for the most part: these builds can’t be used in further promotions.

Instead we can use build #4, which is now in closed status and contains 3 objects: 2 from #1 and 1 from

#2. Why does it show “Last Promoted On” with a date? Because build events are copied from the

source builds to ensure the new build will “know” where objects it contains were last promoted from –

an important piece of information when we want to next promote this build.

Let’s assume the 3 objects covered by the new consolidated build are ready to be moved to production.

After picking the build on the search screen, we’d see:

After clicking on “Run Compare”, we’d see (notice that the Source database has correctly been set to QA

automatically):

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2011

14 | P a g e

After running the change script and confirming the promotion, we’d see this in a subsequent build

search:

Note that the status of #4 is now “Complete”. Build #3 is still open and available to support on-going

development.

Other Portal Reporting

The web site includes a menu option for “Issues”. This report shows a combination of published region

difference failures, published compliance check failures, and collected trace records that indicate an

error condition. In the example below, we’ve made a change in a procedure in QA without ensuring it

was updated in development as well:

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2011

15 | P a g e

This report is able to distinguish “legitimate differences” using SQL-Hero audit tracking – meaning one

needs to be using DML tracking on any databases which participate in region difference checking.

Source control integration also comes into play in deriving an accurate picture, so if TFS is being used,

the TFS plug-in for SQL-Hero should be enabled. Note that the report is not performing a real-time

analysis for compliance issues: it’s looking at published issues. One typically schedules compliance

checking with a frequency that depends on expected object turn-over for a given database – this topic is

covered in another whitepaper.

The Summary report is a quick view of some development metrics, filtered to the logged in user:

The Activity report lets you query the object change log using a date range and some additional filter

parameters. The report groups by “last modified” user and a description of the last activity is included

(e.g. “Created” versus “Updated”). This is the same report that’s available in the SQL-Hero client tool on

the History window. Note that actions from external source control systems can be included here as

well to give a complete and consolidated picture of change.

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2011

16 | P a g e

