
SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2010

1 | P a g e

Revision Description

7/26/2010 Original

SQL-Hero Command Line Tool (SHCommand)

Introduction

There are inevitably cases where you would prefer to automate the process of deploying SQL change

scripts to reconcile data and/or schema differences between databases, without requiring human

intervention. One solution to this problem is to use the SHCommand.exe tool. We’ll look at examples

where this tool has been used to participate in a build process in a way that removes much effort that

would have been required otherwise. Functionality has also been added to this tool to even invoke code

generations that were previously only possible by building the .sqlheroproj project type under Visual

Studio – meaning you can even further automate SQL-Hero processes.

The tool is command-line based and has the following usage:

SHCommand config.SHCommand [arg1, arg2, …, argn]

A configuration file must always be used to provide details, such as the name of the SQL-Hero

application server to use to access global connections by name, and at least one task to execute. The

format of the config file is XML – we use parts of the XSD schema used to validate it below.

The optional arguments are used to replace substitution strings within the config file itself. These

substitution strings look like those you find in the .NET String.Format() function: {0} for the first

argument, {1} for the second argument, and so on.

Configuration File Format

The simplest possible configuration file would have this format:

<TASKS>
 <SERVER>servername</SERVER>
 <TASK action="actionname" level="detailtype"></TASK>
</TASKS>

We provide the SQL-Hero application server name (e.g. “localhost” if running all components locally).

One or more tasks are listed in the order they should be executed. The “action” attribute can include

the following:

Action Description

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2010

2 | P a g e

Action Description

BUILDFILTER Builds a list of objects for use in subsequent tasks. It’s possible to build the list by

object type, objects changed in a certain timeframe, and/or by object name.

SCHEMACOMPARE Compares schema objects between two databases.

SCHEMASCRIPT Builds the change script that would be generated by running the prior

SCHEMACOMPARE task. This does not apply it to the database, but allows you

the opportunity to save it to a file.

SCHEMAROLLBACK Builds the rollback script that would be generated by running the prior

SCHEMACOMPARE task.

SCHEMAEXECUTE Actually applies the change script that was built using the prior SCHEMASCRIPT.

UNITTEST Not yet implemented – will eventually allow you to run SQL unit testing on

demand

DATACOMPARE Compares table data between two databases.

DATASCRIPT Builds the change script that would be generated by running the prior

DATACOMPARE task. This does not apply it to the database, but allows you the

opportunity to save it to a file.

DATAEXECUTE Actually applies the change script that was built using the prior DATASCRIPT.

SQLHEROGEN Performs the code generation based on an input .sqlherogen file. This file type is

associated with the SQL-Hero Build project type available under Visual Studio

after SQL-Hero has been installed.

EMAIL Sends e-mails to fixed distribution lists, supporting attachments.

The “level” attribute can be one of these values:

Level Description

Summary Presents only summary level information related to the task

SuccessPipeFormat Depending on the task type, presents output in list format (e.g. list of object

names) that can be fed into other tools

ErrorOnlyPipeFormat Depending on the task type, presents output in list format for failure cases (e.g.

list of object names that failed during the task) that can be fed into other tools

Detail Presents detail level information related to the task

ErrorOnlyDetail Presents detail level information related to the task, for failure cases only

Other optional TASKS level elements include:

<xs:element name="PREVIEW" type="xs:boolean" minOccurs="0" />
<xs:element name="SILENT" type="xs:boolean" minOccurs="0" />
<xs:element name="FULL_QUALIFIED_NAMES" type="xs:boolean" minOccurs="0" />

PREVIEW can be “true” or “false” and if true, scripts are not actually executed in target databases, but

all other aspects “work” so you could for example get a preview of the script file that would be applied,

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2010

3 | P a g e

before actually applying it. SILENT can be “true” or “false” as well and when true, suppresses all output

from the tool. FULL_QUALIFIED_NAMES is also a Boolean (default is “false”), and when “true”, always

deals in two-part names (i.e. includes the schema).

Task Types

This section details each task type, including the child elements that are available for use. The format

we’ve used is the XSD which is used to validate the .SHCommand XML document – this tells you the data

type expected, plus whether the element is required or not (minOccurs=”0” implies it’s optional).

BUILDFILTER

The BUILDFILTER task constructs a list of objects that are stored internally for later use in subsequent

tasks.

<xs:element name="IN" type="xs:string" minOccurs="0" maxOccurs="1" />

“IN” names the database connection that would be used if using the CHANGED_SINCE option, or other

options that rely on knowing about the contents of a specific database in order to build the object list.

<xs:element name="OBJTYPE" type="xs:string" minOccurs="0" maxOccurs="1" />

“OBJTYPE” is an optional comma separated list of object type codes. These codes correspond to

standard SQL Server object types (e.g. “U” for table, “P” for stored procedure, etc.).

<xs:element name="CHANGED_SINCE" type="xs:string" minOccurs="0" maxOccurs="1" />

“CHANGED_SINCE” allows you to filter only objects changed since a certain date/time, determined by a

time span specified in this element. The time span is subtracted from the current date/time. The time

span should be a number followed by one of these letters: “h” for hours, “d” for days, “w” for weeks.

<xs:element name="OBJECTS" type="xs:string" minOccurs="0" maxOccurs="1" />

“OBJECTS” can be used to explicitly list the objects to participate in the filter. The list can be carriage

return or comma delimited.

<xs:element name="COMPARE_FOR_DELETE" type="xs:string" minOccurs="0" maxOccurs="1" />

When not specified, deletions of objects in the target database will not be possible. This is because as

you build a list against a source database, if objects are missing from the source, they’ll be missing from

the constructed object list filter and so are in effect, invisible for the purposes of comparison. Specifying

a database alias in this element enables deletions since the object name list is unioned with objects in

both the source and target databases.

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2010

4 | P a g e

<xs:element name="ListManager" minOccurs="0" maxOccurs="1">
<xs:element name="moModAfter" type="xs:string" minOccurs="0" maxOccurs="1"/>
<xs:element name="moModBefore" type="xs:string" minOccurs="0" maxOccurs="1"/>
<xs:element name="mblnNoHideIfParentVisible" type="xs:boolean" minOccurs="0"

maxOccurs="1"/>
<xs:element name="mblnNoHideIfChildVisible" type="xs:boolean" minOccurs="0"

maxOccurs="1"/>
<xs:element name="mblnExactMatching" type="xs:boolean" minOccurs="0"

maxOccurs="1"/>
<xs:element name="msModBy" type="xs:string" minOccurs="0" maxOccurs="1"/>
<xs:element name="mbNotModBy" type="xs:boolean" minOccurs="0" maxOccurs="1"/>

Use of the ListManager element and its child elements gives a finer level of control over the filter, but

specific object names cannot be used here.

Example:

 <TASK action="BuildFilter" level="Summary">
 <IN>RD-Development</IN>
 <CHANGED_SINCE>3d</CHANGED_SINCE>
 <COMPARE_FOR_DELETE>RD-QA</COMPARE_FOR_DELETE>
 </TASK>

SCHEMACOMPARE

The SCHEMACOMPARE task builds the list of differences in schema objects between two databases that

can be used in subsequent tasks.

<xs:element name="FROM" type="xs:string"/>

The “FROM” element names the global connection alias of the database that objects are being moved
from.

<xs:element name="TO" type="xs:string"/>

The “TO” element names the global connection alias of the database that objects are being moved to.

<xs:element name="RELAXED_MATCHING" type="xs:boolean" minOccurs="0" maxOccurs="1" />

The relaxed matching semantics that are listed here are used (default is “true”):

<xs:element name="INCLUDE_TESTS" type="xs:boolean" minOccurs="0" maxOccurs="1" />

When “true”, unit tests for SQL objects are included in any future scripting task. Default is “false”.

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2010

5 | P a g e

<xs:element name="IGNORE_CASE" type="xs:boolean" minOccurs="0" maxOccurs="1" />

When “true”, comparisons are case insensitive. Default is “true”.

<xs:element name="MATCH_TYPE" type="xs:string" minOccurs="0" maxOccurs="1" />

Allows one to restrict the comparison to one of: “InSourceNotTarget”, “InTargetNotSource”,
“Different”. If the MATCH_TYPE element is missing, any difference is included.

Example:

 <TASK action="SchemaCompare" level="Detail">
 <FROM>RD-Development</FROM>
 <TO>RD-QA</TO>
 </TASK>

SCHEMASCRIPT

This task requires that a SCHEMACOMPARE task has run previously. This does not actually apply the
schema change script, simply builds it and allows it to be written to a file target.

<xs:element name="RESTRICTIVE_SCRIPTING" type="xs:boolean" minOccurs="0" maxOccurs="1" />

When “true” (the default behavior), it has the same effect as described here, within the application:

<xs:element name="TARGET" nillable="true" minOccurs="0" maxOccurs="1">

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string" />

The TARGET optional element allows you to name a target for the output of the script. Certain
substitution tags are available, as well. These include [date:] and [username], as illustrated in the
example below. Target types include: “File” or “Console”. You can only supply one TARGET element for
a given task.

Example:

 <TASK action="SchemaScript" level="Detail">
 <TARGET type="File">ScriptDevToQA[date:yyyyMMddHHmm][username].sql</TARGET>
 </TASK>

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2010

6 | P a g e

SCHEMAROLLBACK

Similar to the SCHEMASCRIPT task, this causes output to a target – the output in this case is the rollback
script necessary to undo the effect of applying the generated change script from SCHEMASCRIPT. The
same options exist as for SCHEMASCRIPT.

SCHEMAEXECUTE

This task actually executes the SQL from a script previously generated by a SCHEMASCRIPT task. Note
that when the PREVIEW mode is set to “true” for the session, this task will still attempt to apply schema
changes, but it rolls these changes back, meaning the output of this task can still have meaning even in
preview mode.

<xs:element name="IN" type="xs:string"/>

The “IN” element names the global database alias which the generated script will be executed in.

<xs:element name="STOP" type="xs:boolean" minOccurs="0" maxOccurs="1" />

When “true”, the STOP element causes script execution to stop immediately when an error is
encountered. The alternative is that the script continues to execute, potentially applying changes for
other objects. Default is “false”.

<xs:element name="OUTPUT" type="xs:string" minOccurs="0" maxOccurs="1" />

As opposed to the TARGET output reflecting what is actually being executed by this task, the OUTPUT
element captures error information which is generated from SQL Server as the schema change script is
executed. This therefore includes error messages which may result. The element is a filename, and can
include the substitution strings described for SCHEMASCRIPT.

<xs:element name="TIMEOUT" type="xs:integer" minOccurs="0" maxOccurs="1" />

The “TIMEOUT” element provides a timeout (in milliseconds) that is applied to each command as they
execute in the generated change script. The default is 60 seconds.

<xs:element name="FIXME_HANDLING" type="xs:string" minOccurs="0" maxOccurs="1" />

In some cases, SQL-Hero cannot effectively produce a change script without requiring developer
intervention. Normally when using the GUI, the generated script includes the text “FIXME!” which lets
the developer quickly see where they need to typically provide default values. Since the command line
tool is intended to be completely automated, this option lets you define how cases where “FIXME!”
would appear are dealt with. These options exist:

Option Description

Continue Still execute the generated statement. It will inevitably fail, but this will be

logged. This is the default.

ErrorFullTask The entire task is failed – no statements will be run if a FIXME! is detected

anywhere in the generated script.

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2010

7 | P a g e

Option Description

SkipStatement Statements with FIXME! are simply skipped – a warning is provided.

TryUseZero FIXME! text will be replaced with “0” which will work in many cases – this implies

that new required columns would receive a value of “0” regardless of what the

real values should be.

Example:

 <TASK action="SchemaExecute" level="Summary">
 <IN>RD-QA</IN>
 <OUTPUT>ScriptDevToQA[date:yyyyMMddHHmm][username].log</OUTPUT>
 <FIXME_HANDLING>SkipStatement</FIXME_HANDLING>
 </TASK>

DATACOMPARE

The DATACOMPARE task builds the list of differences in data between two databases that can be used in

subsequent tasks.

<xs:element name="FROM" type="xs:string"/>

The “FROM” element names the global connection alias of the database that objects are being moved
from.

<xs:element name="TO" type="xs:string"/>

The “TO” element names the global connection alias of the database that objects are being moved to.

Example:

 <TASK action="DataCompare" level="Detail">
 <FROM>RD-Development</FROM>
 <TO>RD-QA</TO>
 </TASK>

DATASCRIPT

This task requires that a DATACOMPARE task has run previously. This does not actually apply the data
change script, simply builds it and allows it to be written to a file target.

<xs:element name="SUPPRESS_TRIGGERS" type="xs:boolean" minOccurs="0" maxOccurs="1" />

The SUPPRESS_TRIGGERS element, when “true” causes triggers to be disabled on target tables which
can be useful when dealing with certain auditing scenarios. Default is false.

<xs:element name="DELETE_CHILDREN" type="xs:boolean" minOccurs="0" maxOccurs="1" />

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2010

8 | P a g e

When “true”, DELETE_CHILDREN will remove child records when a delete is scripted for a parent record.
When “false”, the delete of the parent will fail. Default is true.

<xs:element name="SET_NULL" type="xs:boolean" minOccurs="0" maxOccurs="1" />

When “true”, the preference will be to null out a child reference when a parent would be deleted. This
is only possible for cases where the parent key is nullable on the child table. Default is true.

<xs:element name="TARGET" nillable="true" minOccurs="0" maxOccurs="1">

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string" />

The TARGET optional element allows you to name a target for the output of the script. Certain
substitution tags are available, as well. These include [date:] and [username], as illustrated in the
example below. Target types include: “File” or “Console”. You can only supply one TARGET element for
a given task.

Example:

 <TASK action="DataScript" level="Detail">
 <TARGET type="File">DataDevToQA[date:yyyyMMddHHmm][username].sql</TARGET>
 </TASK>

DATAEXECUTE

This task actually executes the SQL from a script previously generated by a DATASCRIPT task. Note that
when the PREVIEW mode is set to “true” for the session, this task will still attempt to apply data
changes, but it rolls these changes back, meaning the output of this task can still have meaning even in
preview mode.

<xs:element name="IN" type="xs:string"/>

The “IN” element names the global database alias which the generated script will be executed in.

<xs:element name="STOP" type="xs:boolean" minOccurs="0" maxOccurs="1" />

When “true”, the STOP element causes script execution to stop immediately when an error is
encountered. The alternative is that the script continues to execute, potentially applying changes for
other records. Default is “false”.

<xs:element name="OUTPUT" type="xs:string" minOccurs="0" maxOccurs="1" />

As opposed to the TARGET output reflecting what is actually being executed by this task, the OUTPUT
element captures error information which is generated from SQL Server as the data change script is
executed. This therefore includes error messages which may result. The element is a filename, and can
include the substitution strings described for SCHEMASCRIPT.

<xs:element name="TIMEOUT" type="xs:integer" minOccurs="0" maxOccurs="1" />

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2010

9 | P a g e

The “TIMEOUT” element provides a timeout (in milliseconds) that is applied to each command as they
execute in the generated change script. The default is 60 seconds.

Example:

 <TASK action="DataExecute" level="Detail">
 <IN>RD-QA</IN>
 <OUTPUT>DataDevToQA[date:yyyyMMddHHmm][username].log</OUTPUT>
 </TASK>

SQLHEROGEN

This task type essentially runs a named .sqlherogen file as if it were being built under Visual Studio as
part of a .sqlheroproj project. This is described in some detail here.

<xs:element name="FILE" type="xs:string"/>

The FILE element is used to name the .sqlherogen file that contains the list of templates which will be
executed. The easiest way to build a .sqlherogen file is to use Visual Studio’s designer tool associated
with that file type.

Example:

 <TASK action="SQLHeroGen" level="Detail">
 <FILE>c:\projects\rddev\builditem.sqlherogen</FILE>
 </TASK>

EMAIL

The email task uses a connection to a named SMTP server to send email that can include file
attachments that were generated as part of the scripting process.

<xs:element name="MAILSERVER" type="xs:string"/>

The SMTP mail server name is required.

<xs:element name="FROM" type="xs:string" minOccurs="0" maxOccurs="1" />

The FROM element provides that name that shows up as the sender of the email. The default is
“Automation@SQLHero.null”.

<xs:element name="TO" minOccurs="1" maxOccurs="unbounded">

One or more TO elements list the email address of recipients of the message.

<xs:element name="SUBJECT" type="xs:string" minOccurs="0" maxOccurs="1" />

The SUBJECT element inner text becomes the subject for the outgoing message. The default subject is
“SQL-Hero command line tool email”.

http://www.codexframework.com/sqlhero/StoriesSetup4.aspx

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2010

10 | P a g e

<xs:element name="BODY" type="xs:string" minOccurs="0" maxOccurs="1" />

The BODY element inner text becomes the body for the outgoing message. The default body is empty.

<xs:element name="ATTACHMENT" minOccurs="0" maxOccurs="unbounded">

The ATTACHMENT element inner text can name a file that should be attached to the outgoing message.
The filename can include substitution strings that are described under SCHEMASCRIPT.

Example:

 <TASK action="EMail" level="Detail">
 <MAILSERVER>smptserver</MAILSERVER>
 <TO>fred@codexframework.com</TO>
 <FROM>SHSyncTool@SH.Null</FROM>
 <SUBJECT>Command line tool completed</SUBJECT>
 <BODY>The command line tool completed. Attached are the generated scripts which were
run.</BODY>
 <ATTACHMENT>ScriptDevToQA[date:yyyyMMddHHmm][username].sql</ATTACHMENT>
 <ATTACHMENT>ScriptDevToQA[date:yyyyMMddHHmm][username].log</ATTACHMENT>
 <ATTACHMENT>DataDevToQA[date:yyyyMMddHHmm][username].sql</ATTACHMENT>
 <ATTACHMENT>DataDevToQA[date:yyyyMMddHHmm][username].log</ATTACHMENT>
 </TASK>

