
SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2011

1 | P a g e

Revision Description

6/15/2011 Original

9/5/2011 Minor updates

Pre-and-Post Deployment Scripts

Introduction

When deploying changes to databases, we can’t just focus on schema changes: changes that relate to

data are equally important. In cases, schema changes and supporting scripts go hand-in hand. For

example, let’s say we add a new non-Nullable column on a table; we might use a DEFAULT to support

the non-Nullable aspect, but then need to set the value on existing records based on a more complex

calculation, after which we can drop the DEFAULT. (From a modeling standpoint, let’s assume we’re not

willing to make new fields Nullable, just for deployment concerns.)

What are some possible considerations in the above scenario? First, we need to perform this update

only once on live systems – immediately after the schema change happens. Second, we don’t want to

lose this update script by having it fall outside of an existing build process. Third, we may or may not

need to worry about including this change in a larger “rebuild” – if we needed to roll back to an older

version of the database and roll forward again, we’d probably like to have it applied. Fourth, we’d like

to remove as much conscious effort to include this script in a particular build as possible: having

information like this floating around in e-mails, for example, has proven to be notoriously brittle.

A common approach to managing these kinds of scripts is to build up a consolidated script that assumes

it can be applied as part of rebuilding a database from its starting point. This doesn’t always match

reality, however: imagine a staging region full of data for user test cases, where we must rely on

incremental deployment. Some tools such as the database compare feature built into Visual Studio

2010 acknowledge this fact. Treating arbitrary support scripts like regular schema objects – by storing

them in stored procedures, for example – is one way to start addressing the previously mentioned

considerations. A missing element, however, is in not just reconciling these support stored procedures,

but executing them as part of a deployment process in an automated way.

SQL-Hero Support

SQL-Hero (version 0.9.8.130+) recently added a new way to think of these pre and post deployment

scripts. Instead of housing them on the “outside” of a database, it encourages developers to include

them on the inside. What this means practically is we house these scripts inside stored procedures

which themselves are housed in specially named schemas. The SQL-Hero scripting engine is aware of

these schemas and if it sees objects in these schemas being moved from one database to another, it

includes the execution of these objects – either at the start of the change script (pre) or end of the script

(post).

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2011

2 | P a g e

The advantages of this approach include:

- Greater visibility to the scripts involved: we can quickly find these scripts, since they all live in

one of two schemas (one for pre, one for post).

- Proper linking to the version they apply to: when SQL-Hero detects that the script is in a source

database and not a target database, it both copies the script (i.e. the stored procedure that

houses it) and executes it, effectively applying the script at the correct time. Subsequent

compares and scripting where the script object is no longer new means no EXECUTE is

automatically added.

- Integration with existing build management features in SQL-Hero: since scripts become schema

objects, schema object change tracking is already present and usable in ways like that described

in the whitepaper entitled “SQL-Hero Web Portal.” This ensures greater confidence that scripts

will not be “forgotten” as part of the overall build process.

- Transactional scripting: if transactional scripts are used, the data changes will be properly

committed or rolled back as part of the overall deployment unit.

- Integration with rollback scripting (with non-transactional scripting): since SQL-Hero already has

the ability to generate a rollback script (effectively a compensating transaction to undo changes

from a generated change script), script generated for objects in the pre and post schemas allows

their execution to include the @IsRollback parameter which will be 1 or 0 depending on the

script type. (This is optional but does at least offer the ability to safely perform compensating

transaction work from scripts.)

An Example

Let’s say we have a simple database with Customer, History.Customer and CustomerType tables.

Suppose that the History.Customer table is a replica schema-wise of the Customer table, but holds all

prior record versions. Further suppose that we have a LastUpdatedDate on Customer and

History.Customer, such that the following query would give us the created date for a given customer:

SELECT MIN(LastUpdatedDate)

FROM History.Customer

WHERE CustomerID = @CustomerID

Now assume that we make a decision that having the actual created date persisted on the base

Customer table would be an advantage from a physical modeling standpoint. We would like to add this

new CreatedDate field as non-Nullable since we will always have a created date in reality. We might use

this T-SQL to add the field with a DEFAULT:

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2011

3 | P a g e

ALTER TABLE Customer ADD CreatedDate datetime NOT NULL DEFAULT

(GETUTCDATE())

This works fine for new Customer records, but what about existing customers? We would typically write

a data update script such as this and execute it after the ALTER TABLE is applied:

UPDATE c

SET CreatedDate =

(SELECT MIN(hc.LastUpdatedDate)

FROM History.Customer hc

WHERE hc.CustomerID = c.CustomerID)

FROM Customer c

If we made this schema change in a development database, when it comes time to move such a change

to a QA region, we can use a SQL-Hero schema compare to determine that the Customer table needs to

be altered in QA, and we can get the script to do so. (This is true of other schema compare tools also –

they’re aware of just the schema difference, not any complex rules that lie to the outside, like our

UPDATE statement.)

The first step to automate this is to simply wrap our UPDATE as follows:

CREATE PROCEDURE PostDeployScript.up_UpdateCustomerCreatedDate

AS

BEGIN

UPDATE c

SET CreatedDate =

(SELECT MIN(hc.LastUpdatedDate)

FROM History.Customer hc

WHERE hc.CustomerID = c.CustomerID)

FROM Customer c

END

As you can see, we’re using a specific schema, PostDeployScript, to house scripts such as this. (As such,

you may need to create this schema and grant necessary permissions beforehand.) Is the schema name

hardcoded? Technically no: this is a database-level user-defined property setting within SQL-Hero,

where the defaults are “PreDeployScript” and “PostDeployScript”. You can find it using the Properties

button for the “source” database (i.e. where copying objects from):

SQL-Hero Whitepaper Series
Codex Enterprises LLC
Copyright © 2011

4 | P a g e

When we issue a schema compare now between our development and QA databases, we will see both

the Customer table and PostDeployScript.up_UpdateCustomerCreatedDate objects as being in

development, not in QA. When we create script for moving these objects, we’ll get both the ALTER

TABLE and CREATE PROCEDURE shown above, as would be expected. In addition, we get:

EXECUTE PostDeployScript.up_UpdateCustomerCreatedDate

GO

This takes care of ensuring the CreatedDate is properly set on all existing Customers, following the

schema change. Subsequent compares will not show up_UpdateCustomerCreatedDate as “new for QA”

so no EXECUTE will be added.

Hopefully this illustrates how a simple concept like pre-post deployment schemas can provide big

benefits to database build processes, without adding a lot of extra effort or complexity.

