
SQL-Hero Whitepaper Series 
Codex Enterprises LLC 
Copyright © 2010 
 

1 | P a g e  
 

Revision Description 

4/4/2010 Original 

SQL-Hero History Tracking and Region Differences (Compliance) 
 

Introduction 

What exactly is the history tracking that SQL-Hero provides and how does it contrast with say 

Microsoft’s GDR for VSTS Database Edition?  First, a tool such as GDR works on the premise that you will 

track all database changes in a repository outside of the actual physical database.  Changes are 

effectively reconciled to and from the repository.  There are a few reasons this opens up a “gap”: 

- It is possible to effectively bypass GDR by making changes in the physical database.  It is true 

that a process should be in place to prevent this, but developers have been known to need to 

apply hot-fixes to production databases, sometimes in a hurry – it has been observed that an 

audit trail of actual changes is an important element in any process to close this loop. 

- As a SQL developer, I definitely need to work with a real database as I develop, in order to test 

and debug a variety of objects that operate in concert.  There isn’t integration within Visual 

Studio or SSMS that would capture all of my work as I develop and debug SQL.  As such, one still 

faces a reconciliation step. 

- Assuming the above, GDR will only contain a snapshot in time, namely the point at which I’ve 

consciously committed my work.  It will not contain all changes I’ve ever made in a development 

database, unless I commit every single change as I work:  unlikely given the extra overhead it 

would impose in my development process. 

- GDR will not record all commands I issue against a database (including DML), automatically. 

SQL-Hero differs in that it can automatically track all changes in the actual database:  both DDL and DML 

(see the caveats on DML later).  There are other side advantages to doing things in this way, including 

the fact we can associate names of developers with changes and have a more accurate picture of the 

sequence of change, even in the intermediate steps you would have during development. 

 

Change Tracking 

There are two ways that SQL-Hero can track all changes.  One is by forcing all developers to use the SQL-

Hero editor tool (note that there are ways to enforce this using SQL security).  This is the only real option 

if you’re using a database other than SQL Server 2005 or 2008.  The other way is to apply a DDL trigger 

to the databases you want to track.  You can do this from the “DB Settings” command ( ) on the 

History tool window: 



SQL-Hero Whitepaper Series 
Codex Enterprises LLC 
Copyright © 2010 
 

2 | P a g e  
 

 

This option is only available if your client install of SQL-Hero is pointed at a SQL-Hero application server.  

For details on what this means, consult the “Installing SQL-Hero” whitepaper. 

With the database settings window, you will see all available databases which are designated as being 

“global.”  You control whether a connection is global on the Settings tool where all connections are 

managed: 

 

Back to the “DB Settings” window, we see all global connections, but not all databases can have DDL or 

DML tracking applied (i.e. tracked outside of SQL-Hero, as well).  DDL tracking is only available for SQL 

2005 and 2008.  DML tracking will be available for SQL 2008 in a future release of SQL-Hero.  In the 

example below, we have active DDL tracking on the Finance-Development database. 

 

Optional denial conditions can also be applied on both SQL 2005 and 2008 databases (note that SQL 

Server 2008 out-of-the-box offers some similar capabilities – but 2005 does not): 



SQL-Hero Whitepaper Series 
Codex Enterprises LLC 
Copyright © 2010 
 

3 | P a g e  
 

 

Here we can build a set of conditions that will prevent DDL commands from being issued against the 

database, including checks against the user’s name, object names, and checking against other privileges. 

With DDL tracking in place, all changes - even those made outside of SQL-Hero - will be recorded in the 

repository.  Change records do not appear immediately, however:  the SQL-Hero Windows service works 

to aggregate changes, usually within one to two minutes.  Note that enabling DDL tracking on a 

database adds a schema called “sqlhero” and a table called “sqlhero.ddllog”. 

Another option is to track changes made from the SQL-Hero editor, without requiring any additional 

schema objects.  You can elect to log DDL commands: 

 

Or log all SQL statements, including DML: 

 



SQL-Hero Whitepaper Series 
Codex Enterprises LLC 
Copyright © 2010 
 

4 | P a g e  
 

In terms of what it means to “Log All,” you can either log such changes in the SQL-Hero repository which 

makes even the DML commands available for searching on the History tool, or you can log them locally 

on your computer’s file system (which makes them available for searching using the “Local Recorded 

SQL” tool described below), or using both techniques.  The choice of how to log can be set using some 

Global Settings, available under Manage -> Global Settings on the Editor’s toolbar menu: 

 

 

Now that you’ve collected some change records in the repository, how can you go about searching for 

them?  This is where the History tool shines, with a wide range of search criteria: 



SQL-Hero Whitepaper Series 
Codex Enterprises LLC 
Copyright © 2010 
 

5 | P a g e  
 

 

In this example we’ve searched for any changes since 3/28/2010 and containing the word “validation”.  

Notice that there are different report styles available.  Here is a summary of the behavior of each: 

Details (all versions) Any change that met the criteria would qualify all object changes for a given 

object to be shown. 

Details (with filters) Only changes that fall within the search criteria are displayed. 

Latest Version Only Only the latest version of matched change records is returned, by object. 

Object List (distinct) A distinct list of object names is shown, based on criteria matches. 

New Objects Only An additional condition applied to the search criteria is that the matched change 

records must be for the first version of an object (i.e. if previous change records 

exist then no records are shown for the object). 

Release Notes 

(comments) 

An additional condition applied is that the matched change records must have an 

associated comment (as captured from the SQL-Hero Editor’s comment 

prompting feature), and the output format includes these comments. 

 

Note that the returned results includes a column called “Date” which represents the time the change 

was made as determined by the capturing process (be it SQL-Hero or the DDL trigger).  If there is a large 

difference between this time and the time that the event was actually recorded in the repository, an 

additional column, “Recorded Date,” is shown as well. 

With results in the grid, the grid’s context menu (right-click) allows you to do a number of things: 



SQL-Hero Whitepaper Series 
Codex Enterprises LLC 
Copyright © 2010 
 

6 | P a g e  
 

 

Many of these operations are “standard” grid features that will not be covered here.  Things specific to 

the history tool include the “View Version” command ( ).  This takes the currently selected change 

record’s SQL text and places it into a new SQL-Hero Editor window, for the database it was associated 

with.  This is especially useful if you’re interested in reverting to a prior version of an object. 

The “Compare Versions” command ( ) is only enabled if more than one result record is selected (you 

can multi-select by holding down Ctrl as you click on row selectors).  It will use the SQL-Hero Text 

Differences tool to show deltas between the two change records.  “Compare with Current” takes the 

selected change record and does a similar comparison, with the current version for the selected object. 

“Perform Search Using” ( ) takes the selected row’s object name and reissues a search using the object 

name and database (and style “Details (all versions)”).  This is useful if you locate an object change 

record and want to see all changes for the object, over time.  “Select Object” ( ) takes the selected 

row’s object name and locates that object in the SQL-Hero Editor.  The “Add to Build” command ( ) will 

be covered in a different whitepaper on build management. 

Note that the history search tool is accessible from a couple of different places in SQL-Hero.  The most 

obvious place is on the Editor tool where one can simply right-click on any object, and request its full 

change history: 



SQL-Hero Whitepaper Series 
Codex Enterprises LLC 
Copyright © 2010 
 

7 | P a g e  
 

 

Another feature available related to change tracking is the ability to “label” objects in a database.  If 

you’ve used some source control systems that support the concept of labeling, this is similar:  you’re 

essentially taking a current snapshot and marking it with a “name” which can be later used to recall the 

items as of when the label was created. 

With SQL-Hero, this can be especially useful when you first start working with an established database.  

You will have no history for it to begin with, so an initial label can be useful as a starting point. 

To create a label, use the “Apply Label” command ( ) on the History tool: 

 

This brings up a dialog where you must enter a name for your label, plus you can tweak which objects 

will be included in the label operation: 



SQL-Hero Whitepaper Series 
Codex Enterprises LLC 
Copyright © 2010 
 

8 | P a g e  
 

 

When you select OK, the labeling operation will start in the background.  Progress will be reported on 

the status bar.  Search results after the label operation, searching on the object sp_SomeSlowProc could 

look like this: 

 

Notice that the action is “L” for labeling.  (It is “U” for an update, “I” for an insert/create.)  The comment 

field shows the label name – but also “Created” because that was the comment the user entered when 

prompted to do so, when the object was first created. 

 

Local Recorded SQL 

SQL-Hero version 0.9.6 introduces a new feature which lets anyone track all commands issued against 

any database:  whether it’s a global connection or not in SQL-Hero.  Simply toggle the “Record SQL” 

command ( ) to “on,” and then all commands (DDL and DML) issued in all SQL-Hero Editor windows 

will be recorded. 



SQL-Hero Whitepaper Series 
Codex Enterprises LLC 
Copyright © 2010 
 

9 | P a g e  
 

 

To go back and review what was captured, use the Manage -> Recorded SQL History option, available on 

the toolbar menu: 

 

This brings up a new tab in the editor space which summarizes captured commands, by date and 

database. 

 

From here you can search for string matches (Object Name and/or SQL), or script the text back out to an 

Editor window, for the same database the SQL was captured against.  Note that information captured in 

the local recorded history is not necessarily stored in the central repository and as such, the tool 

window will not find commands captured only in the repository. 

 



SQL-Hero Whitepaper Series 
Codex Enterprises LLC 
Copyright © 2010 
 

10 | P a g e  
 

Region Differences and Compliance 

Consider the scenario where you have three different databases to support an application:  a 

development database, a staging database, and a production database.  Imagine a user has reported a 

problem in the staging database, and a developer has gone in to do investigation.  As part of the 

debugging process, they change an existing object with the intent of reversing their change when 

complete.  During their work they create some new debugging objects, modify some data – and 

eventually resolve the issue.  Let’s suppose they forget to reverse the change that was intended to assist 

in debugging.  Is there a way to find out quickly if anything’s wrong, before a user does? 

With SQL-Hero, there is more than one way to uncover a problem like this.  One way is using automated 

unit testing.  That technique is covered in the whitepaper on unit and performance testing.  Another 

way is using the Region Differences tool. 

The premise here is that you often have an assumed sequence through which objects are moved – 

typically from development, to staging, to production.  If you see a change that’s in staging but not in 

development, you have a compliance issue.  Or if you have an object that’s in production and not in 

staging, that’s another kind of compliance issue.  The Region Differences tool consumes the change 

tracking data in the SQL-Hero repository and reports these compliance issues. 

In the example below, we’re comparing the databases RD-Development and RD-QA.  You can list two or 

more databases, in the box highlighted in green, provide optional filter criteria in the box highlighted in 

red, and then click on Refresh, highlighted in blue: 

 

 



SQL-Hero Whitepaper Series 
Codex Enterprises LLC 
Copyright © 2010 
 

11 | P a g e  
 

The way to read these result is that the stored procedure up_SomeChangeProc is newer in the RD-QA 

database than in the RD-Development database (compare the Last Mod dates).  The procedure 

up_SomeNewProc is in RD-QA and not in RD-Development. 

Names of who modified it last and the machine from where it was modified are included.  Note that the 

machine name is included to cover the case where SQL Authentication may be used - otherwise you 

could see a SQL login name that doesn’t tell you who really made the change.  Note that as part of SQL-

Hero user management, you can relate machine names to users, allowing SQL-Hero to come up with a 

user’s name even if SQL Authentication is being used.  User management is found on the Editor tool 

under the Manage -> Manage Users toolbar menu: 

 

Note the “Default Machine”: 

 

This association to a user, and ultimately a user’s e-mail address is important for another feature that 

the Region Difference’s tool provides:  the ability to schedule region difference checking and deliver the 

results via e-mail.  This option is available on the Region Diffs toolbar: 

 

Below is an example where we’ve set up a scheduled region difference compare between RD-

Development and RD-QA for all objects changed in the last 40 days.  “Replace Existing” causes any 

outstanding region difference records to be removed, as opposed to accumulating a growing list.  

Optional name filters can be applied (here, we’re filtering out objects that are in the “Debug” schema).  

Scheduling information is also supplied here. 



SQL-Hero Whitepaper Series 
Codex Enterprises LLC 
Copyright © 2010 
 

12 | P a g e  
 

 

This scheduled task essentially goes out and “publishes” region difference records.  These can then be 

picked up by the SQL-Hero notification system.  There is a separate whitepaper that covers notifications, 

but to close the loop on region differences, note that it is rather easy to set up a notification that would 

deliver an e-mail to all people who are involved in a compliance issue (or a fixed distribution list).  Here’s 

an example of what one of those e-mails can look like: 

 

 


